

Layermesh

Welcome to the Layermesh user documentation.

Introduction

What is Layermesh?

Layermesh is a Python library for creating and manipulating
computational meshes with a layer/column structure, i.e. a (possibly
unstructured) 2-D mesh projected down through a series of layers of
constant thickness.

The uppermost layers of the mesh may be incomplete (i.e. do not
contain cells for all columns), so that an irregular top surface can
be used to represent e.g. topography.

The Layermesh library can be used to carry out a variety of actions on
such meshes, including:

	creating meshes

	loading and saving from HDF5 [https://www.hdfgroup.org/solutions/hdf5/] files

	exporting to a variety of 3-D mesh formats (via the meshio [https://pypi.org/project/meshio/] library)

	fitting surface elevation data

	local refinement of the horizontal mesh

	optimization to improve horizontal mesh quality

	mesh searching, to locate particular cells, columns or layers

	2-D layer and vertical slice plots (via Matplotlib [https://matplotlib.org/])

Installation

Layermesh can be installed via pip, Python’s package manager:

pip install layermesh

or if you don’t have permissions for installing system-wide Python
packages, you can just install it locally inside your own user
account:

pip install --user layermesh

This will download and install Layermesh from the Python Package Index
(PyPI [https://pypi.org]).

Dependencies

Layermesh depends on several other Python libraries:

	numpy: Numerical Python [https://numpy.org/]

	scipy: Scientific Python [https://www.scipy.org/]

	h5py: Python interface [https://www.h5py.org/] for HDF5

	meshio: Python library for mesh file input/output [https://pypi.org/project/meshio/]

	matplotlib: Python plotting library [https://matplotlib.org/]

These will be installed automatically if not already present, if
pip is used as above to install Layermesh.

Licensing

Layermesh is open-source software, released under the GNU Lesser
General Public License [https://www.gnu.org/licenses/lgpl-3.0.en.html] (LGPL) version 3.

Getting started

	Importing Layermesh in a Python script

	Layermesh classes
	The mesh class

	The node class

	The column class

	The layer class

	The cell class

	Index properties

	Creating rectangular meshes

	Mesh properties

	Reading and writing HDF5 mesh files

	Fitting surface elevation data

	Exporting to other formats

	Searching
	Searching for cells

	Searching for columns

	Searching for layers

	Searching within columns or layers

	Searching within cells

	Horizontal refinement

	Optimizing a mesh

	Creating 2-D plots
	Layer plots

	Slice plots

	Plotting values over the mesh

	Plotting labels

	Plot output

Importing Layermesh in a Python script

Before you can use Layermesh in a Python script, it must be imported
(just like any other Python package). The package name is lowercase:
layermesh.

The layermesh package contains several modules, the most important
of which is the mesh module. There are several different ways a
module can be imported from a Python library. Perhaps the simplest is
to use the following syntax:

from layermesh import mesh

This imports only the mesh module from the layermesh package
(which is typically all that is needed - the other Layermesh modules
are just ones used by the mesh module). Commands from this module
must be prefixed by the module name, mesh.

It is possible to import the module under a different name. For example:

from layermesh import mesh as lm

imports the mesh module and renames it to lm. Then, mesh commands
would be prefixed by lm instead of mesh.

The same thing can also be achieved using:

import layermesh.mesh as lm

Layermesh classes

Layermesh provides the following main Python classes for representing
meshes and mesh components.

	mesh: class for a layer/column mesh

	node: class for a 2-D horizontal mesh node

	column: class for a mesh column, defined by a list of node objects

	layer: class for a mesh layer, defined by its top and bottom elevations

	cell: class for a mesh cell at a particular layer and column

For full documentation of these classes, see the Layermesh API.

The mesh class

A mesh object represents an entire mesh.

It has list properties containing its nodes, columns, layers and
cells. These are called node, column, layer and cell
respectively, and their elements are all objects of the appropriate
type.

The node class

A node object is defined mainly by its position property pos,
a numpy array of length 2, representing its horizontal
location. It also has a column property, a set of the columns the
node belongs to.

The column class

A column object is defined mainly by its nodes, which are stored
in its node property - a list of node objects. It also has a
neighbour property, a set of the neighbouring columns (those which
share a face).

A column object also has layer and cell list properties,
containing the layers and cells in the column. Note that different
columns may have different numbers of layers, as the upper layers in
the mesh may be incomplete, to represent e.g. surface topography.

Columns also have geometric properties derived from their node
positions, e.g. area and centroid, and a surface property,
which is the elevation of the top of the column.

The layer class

A layer object is defined mainly by its top and bottom
properties, which are scalars representing the top and bottom
elevations of the layer.

A layer object also has column and cell list properties,
containing the columns and cells in the layer, as well as a
column_cell property, for locating layer cells by their column
index. Note that different layers may have different numbers of
columns, as the upper layers may be incomplete.

Each layer in a mesh has above and below properties, which are
the layer objects above and below that layer, if they exist. If not
(e.g. for the below property of the bottom layer), they have the
value None.

Layers also have geometric properties derived from their top and
bottom elevations, e.g. centre and thickness.

The cell class

A cell object is defined by its layer and column
properties, which are the layer and column objects corresponding to
the cell.

Cells have geometric properties such as volume and
centroid. Other useful properties can be accessed via the
column and layer properties. For example, for a cell object
c, the horizontal area is given by c.column.area, and its
vertical height is given by c.layer.thickness.

A cell also has a neighbour property, which is a set of its
neighbouring cells, i.e. those with which it shares a face (either
horizontal or vertical). The cell immediately above or below any cell
can be found using its above and below properties. These
return None if there is no cell respectively above or below that
cell.

Index properties

Instances of the node, column, layer and cell classes
all have an index property. This represents their index in the
corresponding list in the mesh they belong to.

For example, for a column col which is part of a mesh m,
col.index gives the index of col in the m.column list.

Creating rectangular meshes

A simple rectangular mesh object can be created by using the
rectangular parameter. This is a list or tuple of the mesh
spacings in each coordinate direction. Each mesh spacing specification
is itself a list, tuple or array of spacings.

For example:

import layermesh.mesh as lm
m = lm.mesh(rectangular = ([1000]*10, [800]*12, [100]*8))

creates a simple regular rectangular 10×12×8 cell mesh, with constant
mesh spacings in the x-, y- and z-directions of 1000, 800 and
100 respectively.

Irregular rectangular meshes can be created by passing non-uniform
mesh spacings in in the rectangular parameter. For example:

import layermesh.mesh as lm
import numpy as np

dx = np.arange(1000, 7000, 1000)
dy = dx
dz = np.arange(10, 60, 10)
m = lm.mesh(rectangular = [dx, dy, dz])

creates an irregular rectangular mesh with equal spacings in the x-
and y-directions ranging from 1000 to 6000, and with layer
thicknesses ranging from 10 at the top to 50 at the bottom.

Mesh properties

Some of the other useful properties of a mesh object, besides its
main list properties node, column, layer and cell,
are:

	num_nodes, num_columns, num_layers, num_cells:
numbers of nodes, columns, layers and cells in the mesh

	area: horizontal area occupied by the mesh

	centre: horizontal centre of the mesh

	bounds: horizontal bounding rectangle around the mesh

	volume: total volume occupied by the mesh cells

	surface_cells: list of cells at the top surface of the mesh

Reading and writing HDF5 mesh files

A Layermesh mesh object can be written to an
HDF5 file [https://www.hdfgroup.org/solutions/hdf5/] using its
write() method, which takes a filename as its parameter, e.g.:

msh.write('mymesh.h5')

writes the mesh object msh to the file “mymesh.h5”.

Similarly, a mesh object can be read in from file by passing in a
filename when creating it:

import layermesh.mesh as lm
msh = lm.mesh('mymesh.h5')

creates a new mesh object called msh and reads its contents
from the file “mymesh.h5”.

Layermesh HDF5 files have a simple structure with four groups:

	cell: one integer scalar type_sort dataset containing the
value of the mesh cell_type_sort property

	layer: one rank-1 array float elevation dataset containing,
in order, the top property of each mesh layer, and finally the
bottom property of the last (bottom) layer

	node: one rank-2 array float position dataset containing the
pos property of each node (horizontal position) in the mesh
node list

	column: an rank-2 integer node dataset containing the index
of each node in the column, for each column in the mesh column
list (columns with fewer nodes padded out with -1 values) ; and also
a rank-1 integer num_layers dataset containing the number of
layers for each column

Fitting surface elevation data

Layermesh meshes may have incomplete upper layers (i.e. different
columns may have different numbers of layers) to represent
e.g. surface topography. The surface of the mesh can be specified by
fitting arbitrary scattered (x, y, z) data, using the mesh
fit_surface() method.

This method uses least-squares finite element fitting with piecewise
constant elements to determine an appropriate surface elevation for
each column. The number of layers in the column is then determined by
taking this fitted elevation and choosing the nearest layer boundary
as the top surface of the column.

On its own, however, this algorithm will fail if the dataset is sparse
and there are columns which do not contain any data points. To
overcome this (and also to help overcome problems with noisy data) an
additional smoothing term is introduced to the least-squares fitting
process. This term is simply the sum of squares of the differences in
elevation across the faces between columns. This term is weighted by a
smoothing parameter (with default value 0.01) which may be passed
into the fit_surface() method.

For example:

import layermesh.mesh as lm
import numpy as np

m = lm.mesh(rectangular = ([1000]*10, [800]*12, [100]*8))
surf = np.loadtxt('surface.txt')
m.fit_surface(surf, smoothing = 0.02)

creates a simple rectangular mesh, loads surface elevation data from a
text file containing (x, y, z) data on each line, and fits the
mesh surface to the data using a smoothing parameter of 0.02.

Generally only a small value of the smoothing parameter is needed to
overcome problems with sparse data. Its value can be increased if the
dataset is noisy and there are large gradients in the fitted surface.

It is also possible to fit data over only some of the mesh columns,
rather than all of them (the default). To do this, the columns
parameter is used, which takes a tuple or list of columns to be
fitted:

cols = m.find([(0,0), (5000, 5000)])
m.fit_surface(surf, columns = cols, smoothing = 0.02)

Here surface fitting is carried out for all columns with centroids
within a rectangle with bottom left coordinates at the origin and top
right coordinates (5000, 5000). (For more information on how to find
particular mesh columns or other mesh components using the find()
method, see Searching.)

Exporting to other formats

The purpose of using Layermesh is usually to create a computational
mesh which can be used by other software (such as a flow simulator or
3-D visualisation package). This involves expanding the layer/column
structure of a Layermesh mesh into a full 3-D mesh, which can then be
exported to a mesh format which other software can read.

This can be done by using the mesh export() method, which
takes a filename as its parameter. The meshio [https://pypi.org/project/meshio/] library is used to write the
mesh, so the mesh can be exported to any mesh format that meshio
understands (ExodusII, GMSH, VTU, XDMF, H5M and more). The desired
format is determined from the filename extension. (Alternatively, it
can be explicitly specified using the fmt parameter.)

For example:

import layermesh.mesh as lm
m = lm.mesh('mymesh.h5')
m.export('mymesh.vtu')
m.export('mymesh.msh')

reads a mesh from a Layermesh HDF5 file and exports it twice, first to
a VTU file for 3-D visualisation using e.g. Paraview [https://www.paraview.org/], and then to GMSH *.msh format.

Searching

Searching for particular Layermesh mesh components (e.g. cells,
columns or layers) can be carried out using the mesh find()
method. This method can be used in several different ways, depending
on what kind of parameters it is given.

Searching for cells

Cells can be found based on their 3-D position, or via a
user-specified function to select cells with particular attributes.

Searching by position

Passing a 3-D point as the parameter to the mesh find() method
will return the cell containing that point. The point can be specified
as a tuple, list or numpy array.

For example:

c = m.find((1200, 3450, -400))

finds the cell in the mesh m containing the point (1200, 3450,
-400) and stores it in the variable c (a cell object).

When used in this way, the find() method first determines the
layer containing the elevation of the point, and then searches that
layer for the appropriate column, using a quadtree search. If the mesh
does not contain the specified point, the find() method will
return None.

Sometimes it may be more convenient to return the index of the cell,
rather than the cell object. This can be done by setting the
indices parameter to True:

i = m.find((1200, 3450, -400), indices = True)

In this case, i is an integer representing the cell
index. (However, None will still be returned if the point is not
inside the mesh.)

Searching using a function

It is also possible to use the find() method to search for cells
with particular attributes defined using a function. The function,
typically user-defined, must take a cell as its argument and return a
Boolean (True or False). The find() method will then
return a list of all mesh cells for which the function is True.

For example, supposing we wish to find all mesh cells with volume
greater than 1000 and centre elevation below -600. To do this, we can
define a suitable function, and pass it to find():

def f(c):
 return c.volume > 1000 and c.layer.centre < -600

cells = m.find(f)

Note that using a function to find cells in this way may not be
efficient for large meshes, as it involves a full search over all mesh
cells.

Searching for columns

Searching by position

Passing a 2-D point (tuple, list or array) into the mesh
find() method will return the column containing that horizontal
position, for example:

p = np.array([3100, 4410])
col = m.find(p)

returns the column object containing the point (3100, 4410)
(represented here by the numpy array p) and stores it in the
variable col. As for cells, setting the indices parameter to
True means that column indices can be returned instead of column
objects. In either case, None is returned if the point is outside
the mesh.

Searching for columns inside a polygon

Passing a polygon of 2-D points into the mesh find() method
will return a list of all columns with centroids inside that polygon.

Here, a polygon is represented by a tuple, list or array of 2-D points
(each one a tuple, list or array of length 2). To search inside a
rectangle, only the bottom left and top right corner points need be
specified (any polygon with only two points will be interpreted as a
rectangle).

For example:

cols = m.find([(0,0), (3500, 4200)])

finds all columns in the rectangle with bottom left corner at the
origin and top right corner at (3500, 4200).

cols = m.find([(0,0), (3500, 1100), (900, 5100)])

finds all columns in the triangle with corners at the specified
points. Polygons may have any number of points.

Searching for layers

Passing a scalar into the mesh find() method will return the
layer containing the specified elevation, e.g.:

lay = m.find(-2400)

returns the layer containing the elevation -2400. Again, the
indices parameter can be used to return layer indices rather than
layer objects, and None is always returned if the elevation is
outside the mesh.

Searching within columns or layers

Mesh columns and layers also have a find() method, which works
very similarly to that of the mesh itself. Passing a 3-D point as
parameter will return the cell containing that point (or None if
it is outside), e.g.:

c = m.layer[-1].find((3450, 1200, -340))

finds the cell in the bottom layer (index -1) of the mesh containing
the point (3450, 1200, -340).

c = m.column[12].find((3450, 1200, -340))

searches column 12 in the mesh for the same 3-D point.

Passing a 2-D point will return the column containing that point. If a
column is being searched, the result will be either the column itself,
or None. For example:

col = m.layer[2].find((230, 345))

finds the column in mesh layer 2 containing the point (230, 345). Note
that the search results can be different in different layers, because
not all of them necessarily contain the same columns (if there are
incomplete layers at the surface).

if m.column[12].find((230, 345)):
 # do something

uses find() in a conditional to execute some code if the
horizontal point (230, 345) is inside column 12 of the mesh.

Passing a scalar will return the layer containing that elevation. If a
layer is being searched, either the layer itself or None will be
returned. For example:

lay = m.column[12].find(-100)

returns the layer in column 12 containing the elevation -100.

if m.layer[-1].find(-3000):
 # do something

executes a conditional statement if the bottom mesh layer contains the
elevation -3000.

Cells in columns and layers can also be found using a function, in
exactly the same way this is done for a mesh.

Searching within cells

It is also possible to search within a cell. This amounts to
determining if the cell contains the specified 3-D point, 2-D
horizontal position or scalar elevation. If it does, the cell, column
or layer itself is returned. If it doesn’t, None is returned.

For example:

if m.cell[2].find((230, 540, -250)):
 # do something

executes a conditional if cell 2 in the mesh contains the 3-D point
(230, 540, -250).

Passing a polygon into a cell’s find() method will return the
cell’s column if its centroid is inside the polygon (or None
otherwise).

Horizontal refinement

Horizontal mesh refinement (i.e. refinement of the column structure)
can be carried out using the mesh refine() method. It is
possible to refine only selected parts of the mesh using the
columns parameter, which is a set, tuple or list of column
objects to be refined.

For example:

cols = m.find((0, 0), (4000, 5000))
m.refine(cols)

will refine all mesh columns within the rectangle with lower left
corner at the origin and upper right corner at (4000, 5000).

The selected columns are replaced by four refined columns (the edges
of the original columns being subdivided in two). Triangular columns
are added around the edge of the refinement area to make the
transition from coarse to fine columns.

Note that the triangular transition columns created by refine()
may not necessarily have desirable mesh quality statistics
(e.g. aspect ratios or face orthogonality). Hence it is often
necessary to follow the refine() command with a call to the
optimize() method (see Optimizing a mesh), in order to regain
acceptable mesh quality in the transition region.

Optimizing a mesh

The accuracy of the results generated from a simulation on a
computational mesh is dependent (in part) on the quality of the
mesh. The way mesh quality is measured depends on the type of
simulation being carried out.

For some types of finite element simulation, for example, elements
should ideally have small aspect ratios and low skewness. For some
types of finite volume simulations, on the other hand, the
orthogonality of the mesh faces is important for accurate results.

Layermesh mesh objects have an optimize() method for improving
mesh quality. This method uses a least-squares minimization technique
to move the mesh node positions in such a way as to maximize specified
mesh quality measures.

Any weighted combination of aspect ratio, skewness and face
orthogonality may be used in the optimization. This is specified via
the weight parameter, which is a dictionary with up to three keys:
“aspect”, “skewness” and “orthogonal”. The values assigned to these
keys are the desired relative weights of the corresponding mesh
quality measures in the optimization.

In general it is not advisable to attempt to optimize the entire mesh
at once. This gives an optimization with too many degrees of freedom,
resulting in long processing times and a greater chance of either
non-convergence or convergence to a nonsensical result. It is better
to focus the optimization on those areas of the mesh that are known to
need improvement. For example, if the mesh has had horizontal local
refinement (see Horizontal refinement), the triangular transition columns may
have low quality, in which case the optimization can be concentrated
on those columns.

The optimization can be limited to either specified nodes, or
specified columns. In the latter case, all nodes in the specified
columns are selected for optimization.

For example:

triangles = m.type_columns(3)
m.optimize(columns = triangles)

optimizes all nodes in triangular columns, using the default
weighting, which gives face orthogonality a weight of 1 and other
measures zero (i.e. only face orthogonality is optimized).

cols = m.find([(0, 0), (4000, 5000)])
m.optimize(columns = cols, weight = {'aspect': 0.75, 'skewness': 0.25})

Here all nodes in columns within a specified rectangle are optimized,
giving 75% weight to aspect ratio and 25% to skewness in the
optimization. (Orthogonality is not specified, so it is given zero
weight.)

Creating 2-D plots

Layermesh can be used to create 2-D plots of the mesh, with cells
optionally labelled and/or shaded with values (e.g. simulation
results).

Layermesh mesh objects have two methods for creating plots:

	the layer_plot() method creates a plot over a specified mesh layer

	the slice_plot() method creates a plot over a specified vertical
slice through the mesh

In either case, the Matplotlib [https://matplotlib.org/] library is
used to create the plot, which can be either viewed directly on the
display or saved to an image file.

Layer plots

The mesh layer_plot() method takes as its first parameter the
layer to be plotted - either a layer object, or an integer mesh
layer index. Alternatively, an elevation can be specified via the
elevation parameter, which will then be used to determine the
appropriate layer. If neither the layer or an elevation is specified,
then the bottom layer is plotted.

Examples:

m.layer_plot() # plot bottom layer

lay = m.layer[2]
m.layer_plot(lay) # plot layer 2

m.layer_plot(elevation = -1350) # plot layer containing elevation -1350

Slice plots

The mesh slice_plot() method takes as its first parameter the
line defining the slice to be plotted. This can be either:

	a string “x” or “y” to plot through the mesh centre along the x- or y-axes

	a number representing an angle (in degrees clockwise from the
y-axis) to plot through the mesh centre on that angle

	a tuple, list or array of two 2-D points representing the end-points
of the line

Examples:

m.slice_plot() # plot through centre along x-axis

m.slice_plot('y') # plot through centre along y-axis

m.slice_plot(45) # plot through centre at 45 degrees from y-axis

line = [(0,0), (3000, 4000)]
m.slice_plot(line) # plot along specified line

Plotting values over the mesh

Both layer_plot() and slice_plot() take an optional value
parameter, which is a tuple, list or rank-1 array of values to plot
over the mesh. The length of the value parameter should be equal
to the number of mesh cells. For example:

T = np.loadtxt('temperatures.txt')
m.layer_plot(elevation = -50, value = T)

loads an array of values from a text file and plots them over the
layer at elevation -50.

When a value is plotted, a colourbar scale is drawn next to the
plot. The optional value_label and value_unit parameters can
be used to produce the name of the quantity being plotted on the
colourbar, together with its units, e.g.:

m.layer_plot(elevation = -50, value = T,
 value_label = 'Temperature', value_unit = 'deg C')

Plotting labels

The layer_plot() and slice_plot() methods also have an
optional label parameter, if labels are to be drawn at the centre
of each cell in the plot.

The label parameter is a string and can be either:

	“cell”: label cells with cell indices

	“value”: label cells with numerical values, taken from the value
parameter

	“column” (layer_plot() only): label cells with column indices

Examples:

m.slice_plot('x', label = 'cell') # plot along x-axis, labelling cell indices

m.layer_plot(10, label = 'column') # plot layer 10, labelling column indices

m.slice_plot('y', value = T, label = 'value') # plot and label T along y-axis

Plot output

By default, the layer_plot() and slice_plot() methods plot
directly to the display, so a plot will appear immediately after the
method is called.

It is also possible to plot to a Matplotlib axes object instead,
via the axes parameter of the layer_plot() and
slice_plot() methods. This can be useful for e.g.:

	putting multiple plots on one page

	superimposing other things on the plot

	saving the output to an image file

For example:

import layermesh.mesh as lm
import numpy as np
import matplotlib.pyplot as plt

m = lm.mesh('mymesh.h5')
P = np.loadtxt('pressures.txt')
T = np.loadtxt('temperatures.txt')

fig = plt.figure()

ax = fig.add_subplot(2, 1, 1)
m.slice_plot('x', axes = ax, value = P,
 value_label = 'Pressure', value_unit = 'bar')

ax = fig.add_subplot(2, 1, 2)
m.slice_plot('x', axes = ax, value = T,
 value_label = 'Temperature', value_unit = 'deg C')

plt.suptitle('Pressure and temperature plots along x-axis')
plt.savefig('plots.png')

Here a mesh is loaded from an HDF5 file, along with the datasets P
and T which are loaded from text files. A Matplotlib figure is
created, and within it, axes for two subplots. These are used to call
slice_plot() twice, to plot P and T along an x-axis
slice.

Finally, the plot is given a title and the output saved to an image file.

If the axes parameter is passed to layer_plot() or
slice_plot(), nothing will appear on the display when the method
is called. In the above example the plot could be shown by adding:

plt.show()

Layermesh API

	layermesh package
	Submodules
	layermesh.geometry module
	bounds_of_points()

	in_polygon()

	in_rectangle()

	line_intersects_rectangle()

	line_polygon_intersections()

	line_projection()

	point_line_distance()

	polygon_area()

	polygon_boundary()

	polygon_centroid()

	polyline_line_distance()

	polyline_polygon_intersections()

	rect_to_poly()

	rectangles_intersect()

	rotation()

	simplify_polygon()

	sub_rectangles()

	vector_heading()

	layermesh.mesh module
	cell

	column

	column_face

	layer

	mesh

	node

	layermesh.quadtree module
	quadtree

	Module contents

layermesh package

Submodules

	layermesh.geometry module
	bounds_of_points()

	in_polygon()

	in_rectangle()

	line_intersects_rectangle()

	line_polygon_intersections()

	line_projection()

	point_line_distance()

	polygon_area()

	polygon_boundary()

	polygon_centroid()

	polyline_line_distance()

	polyline_polygon_intersections()

	rect_to_poly()

	rectangles_intersect()

	rotation()

	simplify_polygon()

	sub_rectangles()

	vector_heading()

	layermesh.mesh module
	cell
	cell.above

	cell.below

	cell.centre

	cell.centroid

	cell.column

	cell.find()

	cell.index

	cell.layer

	cell.neighbour

	cell.num_neighbours

	cell.num_nodes

	cell.surface

	cell.volume

	column
	column.angle_ratio

	column.area

	column.bounding_box

	column.cell

	column.centre

	column.centroid

	column.face_length

	column.face_length_ratio

	column.find()

	column.index

	column.interior_angle

	column.layer

	column.neighbour

	column.node

	column.num_cells

	column.num_layers

	column.num_neighbours

	column.num_nodes

	column.polygon

	column.set_layers()

	column.set_surface()

	column.side_neighbour

	column.surface

	column.translate()

	column.volume

	column_face
	column_face.angle_cosine

	column_face.column

	column_face.node

	layer
	layer.above

	layer.area

	layer.below

	layer.bottom

	layer.cell

	layer.centre

	layer.column

	layer.column_cell

	layer.find()

	layer.horizontal_bounds

	layer.index

	layer.node

	layer.num_cells

	layer.num_columns

	layer.quadtree

	layer.thickness

	layer.top

	layer.translate()

	layer.volume

	mesh
	mesh.add_column()

	mesh.add_layer()

	mesh.add_node()

	mesh.area

	mesh.boundary_nodes

	mesh.bounds

	mesh.cell

	mesh.cell_type_sort

	mesh.centre

	mesh.column

	mesh.column_faces()

	mesh.column_in_layer()

	mesh.column_track()

	mesh.delete_column()

	mesh.export()

	mesh.find()

	mesh.fit_data_to_columns()

	mesh.fit_surface()

	mesh.identify_column_neighbours()

	mesh.layer

	mesh.layer_plot()

	mesh.meshio_points_cells

	mesh.node

	mesh.nodes_in_columns()

	mesh.num_cells

	mesh.num_columns

	mesh.num_layers

	mesh.num_nodes

	mesh.optimize()

	mesh.read()

	mesh.refine()

	mesh.rotate()

	mesh.set_column_layers()

	mesh.set_layer_columns()

	mesh.set_layers()

	mesh.set_rectangular_columns()

	mesh.set_surface()

	mesh.setup()

	mesh.setup_cells()

	mesh.slice_plot()

	mesh.surface

	mesh.surface_cells

	mesh.translate()

	mesh.type_columns()

	mesh.volume

	mesh.write()

	node
	node.column

	node.find()

	node.index

	node.pos

	layermesh.quadtree module
	quadtree
	quadtree.all_elements

	quadtree.bounds

	quadtree.child

	quadtree.elements

	quadtree.generation

	quadtree.leaf()

	quadtree.num_children

	quadtree.num_elements

	quadtree.parent

	quadtree.search()

	quadtree.search_wave()

	quadtree.translate()

Module contents

layermesh.geometry module

Geometry calculations.

	
layermesh.geometry.bounds_of_points(points)

	Returns bounding box around the specified tuple, list, array or set
of points, each one a tuple, list or array of length 2.

	
layermesh.geometry.in_polygon(pos, polygon)

	Tests if the point pos (a tuple, list or array of length 2) a
lies within a given polygon (a tuple or list of points, each
itself a tuple, list or array of length 2).

	
layermesh.geometry.in_rectangle(pos, rect)

	Tests if the point pos lies in an axis-aligned rectangle, defined
as a two-element tuple or list of points [bottom left, top right],
each itself a tuple, list or array of length 2.

	
layermesh.geometry.line_intersects_rectangle(rect, line)

	

	
layermesh.geometry.line_polygon_intersections(polygon, line, bound_line=(True, True), indices=False)

	Returns a list of the intersection points at which a line crosses a
polygon. The list is sorted by distance from the start of the
line. The parameter bound_line controls whether to limit
intersections between the line’s start and end points. If indices
is True, also return polygon side indices of intersections.

	
layermesh.geometry.line_projection(a, line, return_xi=False)

	Finds projection of point a onto a line (defined by two points,
each a tuple, list or array of length 2). Optionally returns the
non-dimensional distance xi between the line start and end.

	
layermesh.geometry.point_line_distance(a, line)

	Finds the distance between point a and a line.

	
layermesh.geometry.polygon_area(polygon)

	Calculates the (unsigned) area of an arbitrary polygon (a tuple,
list or array of points, each one a tuple, list or array of length
2).

	
layermesh.geometry.polygon_boundary(this, other, polygon)

	Returns point on a line between vector this and other and also on
the boundary of the polygon.

	
layermesh.geometry.polygon_centroid(polygon)

	Calculates the centroid of an arbitrary polygon (a tuple, list or
array of points, each one a tuple, list or array of length 2).

	
layermesh.geometry.polyline_line_distance(polyline, line)

	Returns minimum distance between a polyline and a line.

	
layermesh.geometry.polyline_polygon_intersections(polygon, polyline)

	Returns a list of intersection points at which a polyline (a tuple,
list or array of points, each one a tuple, list or array of length
2) crosses a polygon.

	
layermesh.geometry.rect_to_poly(rect)

	Converts a rectangle to a polygon.

	
layermesh.geometry.rectangles_intersect(rect1, rect2)

	Returns True if two rectangles intersect.

	
layermesh.geometry.rotation(angle, centre=None)

	Returns 2-by-2 matrix A and vector b representing a rotation of the
specified angle (degrees clockwise) about the specified centre (or
the origin if no centre is specified). The rotation of a point p
is then given by Ap + b.

	
layermesh.geometry.simplify_polygon(polygon, tolerance=1e-06)

	Simplifies a polygon by deleting colinear points. The tolerance
for detecting colinearity of points can optionally be specified.

	
layermesh.geometry.sub_rectangles(rect)

	Returns the sub-rectangles formed by subdividing the given
rectangle evenly in four.

	
layermesh.geometry.vector_heading(p)

	Returns heading angle of a point p (tuple, list or array of length
2), in radians clockwise from the y-axis (‘north’).

layermesh.mesh module

Layered computational meshes.

	
class layermesh.mesh.cell(lay, col, index=None)

	Bases: object

Mesh cell. On creation, the layer and column defining the cell (and
optionally the cell index) are specified.

	
property above

	Cell above the current cell, or None if there is no cell above it.

	
property below

	Cell below the current cell, or None if there is no cell below it.

	
property centre

	Centroid of cell.

	
property centroid

	Centroid of cell.

	
column

	Cell column object.

	
find(match, indices=False)

	Returns cell, column or layer satisfying the criterion match.

The match parameter can be:

	a function taking a cell and returning a Boolean: the cell is
returned if it matches, otherwise None

	a scalar: match is interpreted as an elevation
and the cell layer is returned if the elevation is inside it

	a 2-D point (tuple, list or array of length 2): match
is interpreted as a horizontal position, and the cell
column is returned if the position is inside it

	a polygon (tuple, list or array of 2-D points): the cell
column is returned if the cell column centroid is inside the
polygon

	a 3-D point (tuple, list or array of length 3): the cell
is returned if the point is inside it

If indices is True, the cell, column or layer index
is returned rather than the cell, column or layer itself.

In each case, None is returned if there is no match.

	
index

	Index of the cell in the mesh.

	
layer

	Cell layer object.

	
property neighbour

	Set of neighbouring cells in the mesh, i.e. those that share a
common face.

	
property num_neighbours

	Number of neighbouring cells in the mesh, i.e. those that share
a common face.

	
property num_nodes

	Number of nodes in the cell (at both top and bottom of layer).

	
property surface

	True if the cell is at the surface of the mesh, False otherwise.

	
property volume

	Volume of cell.

	
class layermesh.mesh.column(node, index=None)

	Bases: _layered_object

Mesh column. On creation, the column’s nodes (and optionally index)
are specified.

	
property angle_ratio

	Angle ratio, defined as the ratio of the largest interior angle
to the smallest interior angle.

This can be used as a measure
of the skewness of the column, with values near 1 being less
skewed.

	
property area

	Area of column.

	
property bounding_box

	Horizontal bounding box of column.

	
cell

	List of cells in the column.

	
property centre

	Column centroid.

	
property centroid

	Column centroid.

	
property face_length

	Array of lengths of the column faces.

	
property face_length_ratio

	Face length ratio, defined as the ratio of the
longest face length to the shortest face length (a
generalisation of the aspect ratio for quadrilateral columns).

	
find(match, indices=False, sort=False)

	Returns cells, columns or layers satisfying the criterion match.

The match parameter can be:

	a function taking a cell and returning a Boolean: a list
of matching cells is returned

	a scalar: match is interpreted as an elevation,
and the layer containing it is returned

	a 2-D point (tuple, list or array of length 2): match
is interpreted as a horizontal position, and self is returned
if it contains the point

	a polygon (tuple, list or array of 2-D points): self is
returned if its centroid is inside the polygon

	a 3-D point (tuple, list or array of length 3): match
is interpreted as a 3-D position, and the cell
containing it is returned

If indices is True, the cell, column or layer indices
are returned rather than the cells, columns or layers
themselves.

If sort is True, then lists of results are sorted by index.

If no match is found, then None is returned, except when the
expected result is a list, in which case an empty list is
returned.

	
index

	Integer containing the column’s index in the mesh.

	
property interior_angle

	Array of interior angles for each node in the column.

	
layer

	List of layers in the column.

	
neighbour

	Set containing the neighbouring columns (those that share a face).

	
node

	List of the node objects in the column.

	
property num_cells

	Number of cells in the column.

	
property num_layers

	Number of layers in the column.

	
property num_neighbours

	Number of neighbouring columns (those that share a face).

	
property num_nodes

	Number of nodes in the column.

	
property polygon

	Polygon (list of arrays of length 2) formed by column node positions.

	
set_layers(layers, num_layers)

	Sets column layers to be the last num_layers layers from the
specified list.

	
set_surface(layers, surface=None)

	Sets column layers from the given list, according to the specified
surface elevation.

If surface = None, then the column is assigned all layers
in the list. Otherwise, it is assigned all layers with centres
below the specified surface elevation.

	
property side_neighbour

	List of neighbouring columns corresponding to each column
side (or None if the column side is on a boundary).

	
property surface

	Surface elevation of the column, given by the top elevation of its uppermost layer.
(This property is read-only: use set_surface() or set_layers()
to set the layers in the column.)

	
translate(shift)

	Translates column horizontally by the specified shift array (a
tuple, list or array of length 2).

	
property volume

	Column volume.

	
class layermesh.mesh.column_face(column)

	Bases: object

Face between two columns. On creation, the two columns on either side
of the face are specified.

	
property angle_cosine

	Cosine of angle between the face and the line joining the
column centroids on either side.

This can be used to measure the orthogonality of the face:
orthogonal faces have angle cosine zero.

	
column

	List or tuple of column objects on either side of the face.

	
node

	List of node objects at either end of the face.

	
class layermesh.mesh.layer(bottom, top, index=None)

	Bases: object

Mesh layer. On creation, the bottom and top elevations of the layer
(and optionally the layer index) are specified.

	
above

	Layer above this one, if it exists, otherwise None.

	
property area

	Horizontal area of layer.

	
below

	Layer below this one, if it exists, otherwise None.

	
bottom

	Bottom elevation of the layer.

	
cell

	List of cells in the layer.

	
property centre

	Elevation of layer centre.

	
column

	List of columns in the layer.

	
column_cell

	Dictionary of cells, keyed by column indices.

	
find(match, indices=False, sort=False)

	Returns cells, columns or layer satifying the criterion match.

The match parameter can be:

	a function taking a cell and returning a Boolean: a list
of matching cells is returned

	a scalar: match is interpreted as an elevation,
and the layer is returned if the elevation is inside it

	a 2-D point (tuple, list or array of length 2): match
is interpreted as a horizontal position, and the column
containing it is returned

	a polygon (tuple, list or array of 2-D points): a list of
columns inside the polygon are returned

	a 3-D point (tuple, list or array of length 3): match
is interpreted as a 3-D position, and the cell
containing it is returned

If indices is True, the cell, column or layer indices are
returned rather than the cells, columns or layer themselves.

If sort is True, then lists of results are sorted by index.

If no match is found, then None is returned, except when the
expected result is a list, in which case an empty list is
returned.

	
property horizontal_bounds

	Horizontal bounding box for layer (list of two arrays of length 2,
representing the bottom left and top right corner coordinates of the
bounding box).

	
index

	Layer index in the mesh (numbered from top down).

	
property node

	Set of nodes in the layer.

	
property num_cells

	Number of cells in the layer.

	
property num_columns

	Number of columns in the layer.

	
property quadtree

	Quadtree object for column searching within the layer.

	
property thickness

	Vertical thickness of layer.

	
top

	Top elevation of the layer.

	
translate(shift)

	Translates layer by specified 3-D shift (a tuple, list or array of
length 3).

	
property volume

	Volume of layer.

	
class layermesh.mesh.mesh(filename=None, **kwargs)

	Bases: _layered_object

A mesh can be created either by reading it from a file, or via
other parameters.

If filename is specified, the mesh is read from the given
HDF5 file.

Otherwise, a rectangular mesh can be created using the
rectangular parameter. Mesh spacings in the three coordinate
directions are specified via tuples, lists or arrays of
spacings. The rectangular parameter is itself a tuple or
list of three of these mesh spacing specifications.

The surface elevations can be specified using the surface
parameter. This can be either a dictionary of pairs of column
indices and corresponding surface elevations, or a tuple, list
or array of surface elevations for all columns. If None is
specified (the default) then all column surfaces will be set
to the top of the uppermost layer.

By default, mesh cells are ordered first by cell type (number
of nodes, in decreasing order), then layer and finally by
column within each layer, from the top to bottom of the
mesh. The sorting of cell types can be reversed or disabled by
setting the cell_type_sort parameter: a value of 1 sorts
cells in increasing type order, and a value of zero disables
cell type sorting.

	
add_column(col)

	Adds a column to the mesh.

	
add_layer(lay)

	Adds a layer to the mesh.

	
add_node(n)

	Adds a horizontal node to the mesh.

	
property area

	Horizontal area of the mesh.

	
property boundary_nodes

	Set of nodes on the boundary of the mesh.

	
property bounds

	Horizontal bounding box for the mesh.

	
cell

	List of cell objects in the mesh.

	
cell_type_sort

	Integer controlling sorting of cells by type. A value of -1 (the default)
gives cells sorted by decreasing type (number of nodes). A value of 1
gives cells sorted by increasing type, while a value of zero disables
cell type sorting.

	
property centre

	Horizontal centre of the mesh (an array of length 2),
approximated by an area-weighted average of column centres.

	
column

	List of column objects in the mesh.

	
column_faces(columns=None)

	Returns a list of the column faces between the specified columns. A
list of the columns may be optionally specified, otherwise all
columns will be included.

	
column_in_layer(col, lay)

	Returns True if column is in the specified layer, or
False otherwise.

	
column_track(line)

	Returns a list of tuples of (column,entrypoint,exitpoint)
representing the horizontal track traversed by the specified
line through the grid. Line is a tuple of two 2D arrays. The
resulting list is ordered by distance from the start of the
line.

	
delete_column(col)

	Deletes the specified column object from the mesh.

	
export(filename, fmt=None)

	Exports 3-D mesh using meshio, to file with the specified name. If
the format is not specified via the fmt parameter, it is determined
from the filename extension.

	
find(match, indices=False, sort=False)

	Returns cells, columns or layers satisfying the criterion match.

The match parameter can be:

	a function taking a cell and returning a Boolean: a list
of matching cells is returned

	a scalar: match is interpreted as an elevation,
and the layer containing it is returned

	a 2-D point (tuple, list or array of length 2): match
is interpreted as a horizontal position, and the mesh column
containing it is returned

	a polygon (tuple, list or array of 2-D points): a list of
mesh columns inside the polygon are returned

	a 3-D point (tuple, list or array of length 3): match
is interpreted as a 3-D position, and the mesh cell
containing it is returned

If indices is True, the cell, column or layer indices
are returned rather than the cells, columns or layers
themselves.

If sort is True, then lists of results are sorted by index.

If no match is found, then None is returned, except when the
expected result is a list, in which case an empty list is
returned.

	
fit_data_to_columns(data, columns=None, smoothing=0.01)

	Fits scattered data to the columns of the mesh, using smoothed
piecewise constant least-squares fitting.

The data should be in the form of a 3-column array with x,y,z
data in each row. Fitting can be carried out over a subset of
the mesh columns by specifying a tuple or list of columns.

Increasing the smoothing parameter will decrease gradients
between columns, and a non-zero value must be used to obtain a
solution if any columns contain no data.

	
fit_surface(data, columns=None, smoothing=0.01)

	Fits surface elevation data to determine the number of layers in
each column.

The data should be in the form of a 3-column array with
x,y,z data in each row. Fitting can be carried out over a
subset of the mesh columns by specifying a tuple or list of
columns.

Increasing the smoothing parameter will decrease gradients
between columns, and a non-zero value must be used to obtain a
solution if any columns contain no data.

	
identify_column_neighbours()

	Identifies neighbours for each column.

	
layer

	List of layer objects in the mesh.

	
layer_plot(lay=-1, **kwargs)

	Creates a 2-D Matplotlib plot of the mesh at a specified layer. The
lay parameter can be either a layer object or a layer index.

Other optional parameters:

	aspect: the aspect ratio of the axes (default ‘equal’).

	axes: a Matplotlib axes object on which to draw the plot. If not
specified, then a new axes object will be created internally.

	colourmap: a Matplotlib colourmap object for shading the plot
according to the value array (default None).

	elevation: used to specify an elevation instead of a layer.

	label: a string (or None, the default) specifying what labels are to be drawn at the centre of each column. Possible values are
‘column’ (to label with column indices), ‘cell’ (to label cell
indices) or ‘value’ (to label with the value array).

	label_format: format string for the labels (default ‘%g’).

	label_colour: the colour of the labels (default ‘black’).

	linecolour: the colour of the mesh grid (default ‘black’).

	linewidth: the line width of the mesh (default 0.2).

	value: a tuple, list or array of values to plot over the mesh,
of length equal to the number of cells in the mesh.

	xlabel: label string for the plot x-axis (default ‘x’).

	ylabel: label string for the plot y-axis (default ‘y’).

	
property meshio_points_cells

	Lists of 3-D points and cells suitable for mesh
input/output using meshio library.

	
node

	List of node objects in the mesh.

	
nodes_in_columns(columns)

	Returns a set of nodes in the specified columns.

	
property num_cells

	Number of 3-D cells in the mesh.

	
property num_columns

	Number of columns in the mesh.

	
property num_layers

	Number of layers in the mesh.

	
property num_nodes

	Number of 2-D nodes in the mesh.

	
optimize(nodes=None, columns=None, weight={'orthogonal': 1})

	Adjusts horizontal positions of specified nodes to optimize the
mesh. If no nodes are specified, all node positions are
optimized. If columns are specified, the positions of nodes in
those columns are optimized.

Three types of optimization are offered, with their relative
importance in the optimization specified via the weight
dictionary parameter. This can contain up to three keys:

	‘orthogonal’: the orthogonality of the mesh faces

	‘skewness’: the skewness of the columns

	‘aspect’: the aspect ratio of the columns

Omitting any of these keys from the weight parameter will
give them zero weight. Weights need not sum to 1: only their
relative magnitudes matter.

The optimization is carried out by using the leastsq()
function from the scipy.optimize module to minimize an
objective function formed from a weighted combination of the
mesh quality measures above.

	
read(filename)

	Reads mesh from HDF5 file.

	
refine(columns=None)

	Refines selected columns in the mesh. If no columns are specified,
then all columns are refined. The columns parameter can be a
set, tuple or list of column objects.

Each selected column is divided into four new
columns. Triangular transition columns are added around the
edge of the refinement area as needed.

Note that the selected columns must be either triangular or
quadrilateral (columns with more than four edges cannot be
refined).

Mesh refinement will generally alter the indexing of the mesh
nodes, columns and cells, even those not within the refinement
area. Hence, it should not be assumed, for example, that
columns outside the refinement area will retain their original
indices after the refinement.

Based on the mulgrid refine() method in PyTOUGH.

	
rotate(angle, centre=None)

	Rotates the mesh horizontally by the specified angle (degrees
clockwise). If no centre is specified, the mesh is rotated
about its own centre.

	
set_column_layers(num_layers)

	Sets column layers from dictionary (keyed by column indices) or
list/array of layer counts for each column.

	
set_layer_columns(lay)

	Populates the list of columns for a given layer.

	
set_layers(elevations)

	Sets mesh layers according to specified vertical layer boundary
elevations, from the top down.

	
set_rectangular_columns(spacings)

	Sets rectangular mesh columns according to specified lists of horizontal
mesh spacings.

	
set_surface(surface)

	Sets column layers from surface dictionary (keyed by
column indices) or list/array of values for all columns.

	
setup(indices=False)

	Sets up internal mesh variables, including node, column and layer
indices if needed.

	
setup_cells()

	Sets up cell properties of mesh, layers and columns.

	
slice_plot(line='x', **kwargs)

	Creates a 2-D Matplotlib plot of the mesh through a specified
vertical slice. The horizontal line defining the slice can be either:

	‘x’: to plot through the mesh centre along the x-axis

	‘y’: to plot through the mesh centre along the y-axis

	a number representing an angle (in degrees), clockwise from the y-axis,
to plot through the centre of the mesh at that angle

	a tuple, list or array of two end-points for the line, each point being
itself a tuple, list or array of length 2

Other optional parameters:

	aspect: the aspect ratio of the axes (default ‘auto’).

	axes: a Matplotlib axes object on which to draw the plot. If not
specified, then a new axes object will be created internally.

	colourmap: a Matplotlib colourmap object for shading the plot
according to the value array (default None).

	label: a string (or None, the default) specifying what labels are to be drawn at the centre of each cell. Possible values are
‘cell’ (to label cell indices) or ‘value’ (to label with the
value array).

	label_format: format string for the labels (default ‘%g’).

	label_colour: the colour of the labels (default ‘black’).

	linecolour: the colour of the mesh grid (default ‘black’).

	linewidth: the line width of the mesh (default 0.2).

	value: a tuple, list or array of values to plot over the mesh,
of length equal to the number of cells in the mesh.

	xlabel: label string for the plot x-axis (default ‘x’).

	ylabel: label string for the plot y-axis (default ‘z’).

	
property surface

	Array of column surface elevations.

	
property surface_cells

	List of cells at the surface of the mesh.

	
translate(shift)

	Translates the mesh by the specified 3-D shift vector (tuple, list
or array of length 3).

	
type_columns(num_nodes)

	Returns a list of mesh columns of a specified type, i.e. number of
nodes.

	
property volume

	Total volume of the mesh.

	
write(filename)

	Writes mesh to HDF5 file.

	
class layermesh.mesh.node(pos, index=None)

	Bases: object

2-D mesh node. On creation, the node’s horizontal position (and
optionally index) are specified.

	
column

	Set containing the column objects the node belongs to.

	
find(polygon, indices=False)

	Returns self if the node is inside the specified polygon (tuple,
list or array of 2-D points, each one a tuple, list or array
of length 2), otherwise None.

	
index

	Integer containing the node’s index in the mesh.

	
pos

	Array containing the node’s horizontal position.

layermesh.quadtree module

Quadtrees for spatial searching in 2D meshes.

	
class layermesh.quadtree.quadtree(bounds, elements, parent=None)

	Bases: object

Quadtree for spatial searching of mesh columns. On creation, the
quadtree’s bounding box, elements and optional parent quadtree are
specified.

Adapted from the quadtree data structure in PyTOUGH.

	
all_elements

	The elements list of the zeroth-generation quadtree.

	
bounds

	The quadtree’s bounding box.

	
child

	A list of the quadtree’s child quadtrees.

	
elements

	The elements in the quadtree.

	
generation

	The generation index of the quadtree.

	
leaf(pos)

	Returns the leaf containing the specified point pos.

	
property num_children

	Number of children of the quadtree.

	
property num_elements

	Number of elements in the quadtree.

	
parent

	The quadtree’s parent quadtree.

	
search(pos)

	Returns the element containing the specified point pos.

	
search_wave(pos)

	Executes search wave for specified point pos on a quadtree
leaf.

	
translate(shift)

	Translates the quadtree horizontally by the specified shift
vector (an array of length 2).

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 layermesh	

 	
 	
 layermesh.geometry	

 	
 	
 layermesh.mesh	

 	
 	
 layermesh.quadtree	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

A

 	
 	above (layermesh.mesh.cell property)

 	(layermesh.mesh.layer attribute)

 	add_column() (layermesh.mesh.mesh method)

 	add_layer() (layermesh.mesh.mesh method)

 	add_node() (layermesh.mesh.mesh method)

 	
 	all_elements (layermesh.quadtree.quadtree attribute)

 	angle_cosine (layermesh.mesh.column_face property)

 	angle_ratio (layermesh.mesh.column property)

 	area (layermesh.mesh.column property)

 	(layermesh.mesh.layer property)

 	(layermesh.mesh.mesh property)

B

 	
 	below (layermesh.mesh.cell property)

 	(layermesh.mesh.layer attribute)

 	bottom (layermesh.mesh.layer attribute)

 	boundary_nodes (layermesh.mesh.mesh property)

 	
 	bounding_box (layermesh.mesh.column property)

 	bounds (layermesh.mesh.mesh property)

 	(layermesh.quadtree.quadtree attribute)

 	bounds_of_points() (in module layermesh.geometry)

C

 	
 	cell (class in layermesh.mesh)

 	(layermesh.mesh.column attribute)

 	(layermesh.mesh.layer attribute)

 	(layermesh.mesh.mesh attribute)

 	cell_type_sort (layermesh.mesh.mesh attribute)

 	centre (layermesh.mesh.cell property)

 	(layermesh.mesh.column property)

 	(layermesh.mesh.layer property)

 	(layermesh.mesh.mesh property)

 	centroid (layermesh.mesh.cell property)

 	(layermesh.mesh.column property)

 	child (layermesh.quadtree.quadtree attribute)

 	classes

 	cell

 	column

 	layer

 	mesh

 	node

 	
 	column (class in layermesh.mesh)

 	(layermesh.mesh.cell attribute)

 	(layermesh.mesh.column_face attribute)

 	(layermesh.mesh.layer attribute)

 	(layermesh.mesh.mesh attribute)

 	(layermesh.mesh.node attribute)

 	column_cell (layermesh.mesh.layer attribute)

 	column_face (class in layermesh.mesh)

 	column_faces() (layermesh.mesh.mesh method)

 	column_in_layer() (layermesh.mesh.mesh method)

 	column_track() (layermesh.mesh.mesh method)

D

 	
 	delete_column() (layermesh.mesh.mesh method)

E

 	
 	elements (layermesh.quadtree.quadtree attribute)

 	
 	export() (layermesh.mesh.mesh method)

F

 	
 	face_length (layermesh.mesh.column property)

 	face_length_ratio (layermesh.mesh.column property)

 	find() (layermesh.mesh.cell method)

 	(layermesh.mesh.column method)

 	(layermesh.mesh.layer method)

 	(layermesh.mesh.mesh method)

 	(layermesh.mesh.node method)

 	
 	fit_data_to_columns() (layermesh.mesh.mesh method)

 	fit_surface() (layermesh.mesh.mesh method)

G

 	
 	generation (layermesh.quadtree.quadtree attribute)

H

 	
 	horizontal_bounds (layermesh.mesh.layer property)

I

 	
 	identify_column_neighbours() (layermesh.mesh.mesh method)

 	in_polygon() (in module layermesh.geometry)

 	in_rectangle() (in module layermesh.geometry)

 	index (layermesh.mesh.cell attribute)

 	(layermesh.mesh.column attribute)

 	(layermesh.mesh.layer attribute)

 	(layermesh.mesh.node attribute)

 	
 	interior_angle (layermesh.mesh.column property)

L

 	
 	layer (class in layermesh.mesh)

 	(layermesh.mesh.cell attribute)

 	(layermesh.mesh.column attribute)

 	(layermesh.mesh.mesh attribute)

 	layer_plot() (layermesh.mesh.mesh method)

 	
 Layermesh

 	API

 	classes

 	dependencies

 	getting started

 	importing

 	installing

 	licensing

 	
 	
 layermesh

 	module

 	
 layermesh.geometry

 	module

 	
 layermesh.mesh

 	module

 	
 layermesh.quadtree

 	module

 	leaf() (layermesh.quadtree.quadtree method)

 	line_intersects_rectangle() (in module layermesh.geometry)

 	line_polygon_intersections() (in module layermesh.geometry)

 	line_projection() (in module layermesh.geometry)

M

 	
 	
 mesh

 	exporting

 	HDF files

 	layer plots

 	optimizing

 	plotting

 	properties

 	reading

 	rectangular

 	refinement

 	searching

 	slice plots

 	surface elevations

 	writing

 	
 	mesh (class in layermesh.mesh)

 	meshio_points_cells (layermesh.mesh.mesh property)

 	
 module

 	layermesh

 	layermesh.geometry

 	layermesh.mesh

 	layermesh.quadtree

N

 	
 	neighbour (layermesh.mesh.cell property)

 	(layermesh.mesh.column attribute)

 	node (class in layermesh.mesh)

 	(layermesh.mesh.column attribute)

 	(layermesh.mesh.column_face attribute)

 	(layermesh.mesh.layer property)

 	(layermesh.mesh.mesh attribute)

 	nodes_in_columns() (layermesh.mesh.mesh method)

 	num_cells (layermesh.mesh.column property)

 	(layermesh.mesh.layer property)

 	(layermesh.mesh.mesh property)

 	
 	num_children (layermesh.quadtree.quadtree property)

 	num_columns (layermesh.mesh.layer property)

 	(layermesh.mesh.mesh property)

 	num_elements (layermesh.quadtree.quadtree property)

 	num_layers (layermesh.mesh.column property)

 	(layermesh.mesh.mesh property)

 	num_neighbours (layermesh.mesh.cell property)

 	(layermesh.mesh.column property)

 	num_nodes (layermesh.mesh.cell property)

 	(layermesh.mesh.column property)

 	(layermesh.mesh.mesh property)

O

 	
 	optimize() (layermesh.mesh.mesh method)

P

 	
 	parent (layermesh.quadtree.quadtree attribute)

 	point_line_distance() (in module layermesh.geometry)

 	polygon (layermesh.mesh.column property)

 	polygon_area() (in module layermesh.geometry)

 	
 	polygon_boundary() (in module layermesh.geometry)

 	polygon_centroid() (in module layermesh.geometry)

 	polyline_line_distance() (in module layermesh.geometry)

 	polyline_polygon_intersections() (in module layermesh.geometry)

 	pos (layermesh.mesh.node attribute)

Q

 	
 	quadtree (class in layermesh.quadtree)

 	(layermesh.mesh.layer property)

R

 	
 	read() (layermesh.mesh.mesh method)

 	rect_to_poly() (in module layermesh.geometry)

 	rectangles_intersect() (in module layermesh.geometry)

 	
 	refine() (layermesh.mesh.mesh method)

 	rotate() (layermesh.mesh.mesh method)

 	rotation() (in module layermesh.geometry)

S

 	
 	search() (layermesh.quadtree.quadtree method)

 	search_wave() (layermesh.quadtree.quadtree method)

 	set_column_layers() (layermesh.mesh.mesh method)

 	set_layer_columns() (layermesh.mesh.mesh method)

 	set_layers() (layermesh.mesh.column method)

 	(layermesh.mesh.mesh method)

 	set_rectangular_columns() (layermesh.mesh.mesh method)

 	set_surface() (layermesh.mesh.column method)

 	(layermesh.mesh.mesh method)

 	
 	setup() (layermesh.mesh.mesh method)

 	setup_cells() (layermesh.mesh.mesh method)

 	side_neighbour (layermesh.mesh.column property)

 	simplify_polygon() (in module layermesh.geometry)

 	slice_plot() (layermesh.mesh.mesh method)

 	sub_rectangles() (in module layermesh.geometry)

 	surface (layermesh.mesh.cell property)

 	(layermesh.mesh.column property)

 	(layermesh.mesh.mesh property)

 	surface_cells (layermesh.mesh.mesh property)

T

 	
 	thickness (layermesh.mesh.layer property)

 	top (layermesh.mesh.layer attribute)

 	translate() (layermesh.mesh.column method)

 	(layermesh.mesh.layer method)

 	(layermesh.mesh.mesh method)

 	(layermesh.quadtree.quadtree method)

 	
 	type_columns() (layermesh.mesh.mesh method)

V

 	
 	vector_heading() (in module layermesh.geometry)

 	volume (layermesh.mesh.cell property)

 	(layermesh.mesh.column property)

 	(layermesh.mesh.layer property)

 	(layermesh.mesh.mesh property)

W

 	
 	write() (layermesh.mesh.mesh method)

 nav.xhtml

 Table of Contents

 		
 Layermesh

_static/file.png

_static/minus.png

_static/plus.png

